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7-42. Consider differential scattering by a magnetic obstacle (Fig. 7-17) and define

ke =Jo(e — &)  km = jwls — o)

Show that, instead of Bq. (7-143), we have

_ Ga®
Eeho = p0) — @)

where {Z,a) = / / (Bf+ Jo — H*- Mo) dr
F(a,a) = /// [xe1(JT2)? — kmN(M=)? dr
- {a,0) =// (Ee-Jo — He- Me) dr

In the above formulas, E¢, H' is the incident field, J* and M¢ are the assumed electric
and magnetic polarization currents'on the obstacle, and E=, H? is the field from Je, M=,

7-43. Figure 7-28a represents a metal antenna cut from & plane conductor and fed
across the slot ab. Figure 7-28b represents the aperture formed by the remainder of

the metal plane left after the metal antenna was cut. The aperture antenna, fed

(@ ®)
Fig. 7-28. (a) A sheet-metal antenna and (b) its complementary aperture antenna.

across cd, is said to be complementary to the metal antenna. Let Z,, be the input
impedance of the metal antenna and Y, be the input admittance to the slot antenna,
and show that

Zn

Y,

7]2
ry
Hint: Consider line integrals of E and H from ¢ to b and ¢ to d, and use duality.

7-44. Consider a narrow resonant slot of approximate length »/2 in & conducting
screen. Show that the transmission coefficient is

T = 0.523
w

v;vhere w is the width of the slot. Hént: Use the result of Prob. 7-43 and assumptions
similar to those of Prob, 7-39,

CHAPTER 8

MICROWAVE NETWORKS

8-1. Cylindrical Waveguides. Several Y
special cases of the cylindrical waveguide, n
such as the rectangular and circular guides,
already have been considered. We now wish 1
to give a general treatment of cylindrical s X
(cross section independent of 2) Waveguides L
consisting of a homogeneous isotropic dielec- ]
tric boungded by a perfect electric c9nductor. f‘;ﬁﬁdiiglgzizgiﬁ?n of &
Figure 8-1 represents the cross section of one, o
such waveguide. Our formulation of the problem will be similar to that
given by Marcuvitz.!

As shown in Sec. 3-12, general solutions for the field in a homogeneous
region can be constructed from solutions to the Helmholtz equation

vy + kW =0 (8-1)

In cylindrical coordinates, this equation can be partially separated by
taking

¥ = Y@y ZE) | (8-2)
The resultant pair of equations are
Ve¥ 4+ k¥ =0 (8-3)
L | yez =0 (8-4)
dz?

where the separation constants k. and k. are related by
Bt 4 kit = B2 (8-5)

and V, is the two-dimensional (transverse to z) del operator

o
= — —_— 8-6
Vi=V-ul (8-6)

1 N. Marcuvitz, *“Waveguide Handbook,” MIT Radiation Laboratory Series, vol.
10, sec. 1-2, McGraw-Hill Book Company, Inc., New York, 1951,
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Solutions to Eq. (8-4) are of the general form ‘
Z(z) = Ae 7%= 4 Beikse ’ (8-7)

which, for k, real, is a superposition of +z and —z traveling waves. The
k. are determined from Eq. (8-5) after the k. (cutoff wave numbers) are
found by solving the boundary-value problem.

For TE modes, we take F = u,y* (superscript ¢ denotes TE) and
determine ‘

8 = a_'pe %— € (]
E Uegy F WGy = (u. X V)7 (8-8)

The component of E tangential to the waveguide boundary C is
Er =1-(u, X V&= (n.Vv¥92Ze

where 1is the unit tangent to C and n is the unit normal to C (see Fig. 8-1).
The boundary is perfectly conducting; hence E; = O on C and

o

% =0 on C (8-9)
The associated magnetic field is given by .
1 1 a%ye a2ye )
He = — — 6 = z — -7 2 52 e
Gou Y X E ]wu<u dzaz T W ggep T U "’>
For more concise notation, we define a transverse field vector as
Ht =H — u:Hz (8-10)
and rewrite the above as
e_.l edzc e_k°2 e7e N
He = Tan (Vo) o H, = Tom V7 (8-11)

It is evident from Egs. (8-8) and (8-11) that lines of & and 3¢, are every-
where perpendicular to each other.

For TM modes, we take A = uy™ (superseript m denotes TM) and,
dual to Eq. (8-8), we determine

Hr = —(u, X Vi¥m)Zn (8-12)

Defining the transverse electric field vector E; by Eq. (8-10) with H
replaced by E, we have, dual to Eq. (8-11),

m_l dem m_k°2mm
E; —j—we(Vg\I')W E; _j:e‘l,z (8-13)

From the second of these equations, it is evident that for E, to vanish on
C we must meet the boundary condition

¥ =0 onC (8-14)
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provided k. = 0. Note that Eq. (8-14) also satisfies the gondition
1.E, =0 on C. When the waveguide cross section is mult1p1y con-
nected, such as in coaxial lines, it is possible to have k, = 0. In this case,
the necessary boundary condition is ¥™ = constant on eac?x conductor.
The corresponding field is TEM to 2 and is a transmission-line moc?e..

It should be kept in mind that Eq. (8-3) subject to boundary conditions
is an eigenvalue problem, giving rise to a discrete set of modes.. Thgse
modes can be suitably ordered, and the various equations of this secfjlon
then apply to each mode. It is convenient to introduce mode fun.ctzons
e(z,y) and h(z,y), mode voltages V (z), and mode currents I(z) according to

Ec=eVe Em=e"V" (8-15)
Hte = heIe H"'_ = hmIm
Comparing Egs. (8-15) with Eqgs. (8-8) and (8-11), we see that we may
choose

o mu X V= bt XU, V=2
' _ 1 dze (8-16)
Jop dz

he = —V,¥° = u, X €° I =

for TE modes, and, comparing Egs. (8-15) with Egs. (8-12) and (8-13),

Vm = — _1_@
en = —vam =hT X T jwe dz (8-17)
hm= _u‘xvt\pm=uzxem Im=Zm

for TM modes. Furthermore, we normalize the mode vectors according

to
[[ @ras = [[ moras =1 618

// (emtds = // (hm)tds = 1

where the integration extends over the guide cross section. Hence, all
amplitude factors are included in the V’s and I’s.

We shall now show that all eigenvalues are real. Consider the two-
dimensional divergence theorem ‘

N vt.Ads=¢A-ndl

and let A = ¥*v,;¥. Then,
Vg . A = Vg‘I'* . Vg‘I' + ‘I’*V;z‘l' = IVg‘I'lz - k¢2l‘1'12

and the divergence theorem becomes

' v
/ f (Vo — ko)) ds = §wr 5l dl
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But the boundary conditions on the eigenfunction ¥ are either ¥ = 0 or
9¥/dn = 0 on C. Hence, the right-hand term vanishes and

k2 = M (8_19)
f [ w2 ds

The eigenvalue k. is therefore positive real. There is also no loss of
generality if we take all eigenfunctions ¥ to be real. To justify this state-
ment, suppose ¥ is not real, and let ¥ = u + ju. Then the Helmholtz
equation is

VeV + k¥ = Viu + kPu + j(Viér + k) = 0

which, since k.? is real, represents two Helmholtz equations for the real
functions u and ». The boundary conditions, either

VY=u+jv=0 on C
ov ou . 0V
or ‘ %—%4‘]6—1;—0 on C

are satisfied independently by u and v; so » and » are solutions to the same
boundary-value problem. Hence, u and » for a particular k, can differ
only by a constant, and ¥ is in phase over a guide cross section. We can
take it to be real and include any phase in the V and I functions.

Let us now look at the propagation constant v = Jjk.. For e and g
real, we have a cutoff wavelength

27
and a cutoff frequency
k
. = ‘o 8-21
i PRy (8-21)
Then, from Eq. (8-5), we have the propagation constant given by -
. . Te\?
38 =k J1 = <7> >t
v = jk. = (8-22)

wmtii= () ses

These are, of course, just the relationships that we previously established
for the rectangular and circular waveguides. Figure 2-18 illustrates the
behavior of @ and 8 versus f. When the mode is propagating (f > f.),
the concepts of guide wavelength,
27 A
B VI-(GD
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where )\ is the intrinsic wavelength in the dielectric, and guide phase
velocity,

N | E— 8-24
B V1 — (/) (®-24)
where v, is the intrinsic phase velocity, are useful. These parameters
are discussed in Sec. 2-7.

Turning now to the mode voltages and currents, we see from their
definitions [Eqs. (8-16) and (8-17)] that V and I satisfy Eq. (8-4).
Hence, in general they are of the form of Eq. (8-7), or

V(z) = Vte 7 + V—ere
I(z) = ITe™"* 4 [er*

Vg =

(8-25)

where superseripts + and — denote positively and negatively traveling
(or attenuating) wave components. Also, from Eqgs. (8-4), (8-16), and
(8-17) it is apparent that -

v+ V-

T" = Zy T_ =. —Zo (8‘26)

where the characteristic impedance Z, is, for TE modes,

g _don _ ) BT NT= G g 8.27)
Y Jop _ Jou <f,
@ kN1— (/1) <t

and, for TM modes,

Z.)B_é =17 1- <7c>2 f > fc
g = ¥ (8-28)

Juwe a _& _ iz
Foe = ue N <f> I<t

Note that these are just the characteristic wave impedances that we pre-
viously defined for rectangular and circular waveguides. Figure 4-3
illustrates the behavior of the Z¢’s versus frequency. Finally, from Egs.
(84), (8-16), and (8-17), we can show that V and I also satisfy the irans-
massion-line equations

av

— = —~Zol
dz Bt

8-29
dl Y Vi ( )
E - 0

where Yo = 1/Z, is the characterisitc admittance. Hence, the analogy
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Fic. 8-2. Equivalent transmission lines for waveguide modes (series elements labeled
in ohms, shunt elements in mhos). (¢) TE modes, (6) TM modes.

with transmission lines is complete, and all of the techniques for analyzing
transmission lines can be applied to each waveguide mode.!

We may define an equivalent transmission line for each waveguide mode
as one for which v and Z, are the same as those of the waveguide mode.
Such an equivalent circuit may help us to visualize waveguide behavior

by presenting it in terms of the more familiar transmission-line behavior.
For a dissipationless transmission line, we have

7z X
zo_\/?=\[_3
y = VZY = jA/XB

(see Sec. 2-6). Equating the above Z, and v to those of a TE waveguide
mode, we obtain

. . . . k.2
X = B = =< 8-
J Jop 7 Jwe + om (8-30)

Thus, the transmission line equivalent to a TE mode is as shown in Fig. -
8-2a. Similarly, for a TM mode we obtain

. , k.2 i _
JX = jou + _7—40; JB = juwe (8-31)

1 For example, see Wilbur LePage and Samuel Seely, “General Network Ana.lysis,"’
Chaps. 9 and 10, McGraw-Hill Book Company, Inc., New York, 1952.
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The transmission line equivalent to a TM mode is therefo.re s sh9wn n
Tig. 8-2b. If the dielectric is lossy, the equivalent i?rar.xsmlssmn will also
have resistances, obtained by replacing jwe by ¢ + juwe in Eqgs. (8-3.0) and
(8-31). In the light of filter theory, we can recognize the equivalent

transmission lines as high-pass filters. o .
The power transmitted along the waveguide is, of course, obtained by
integrating the Poynting vector over the guide cross section. Hence, for

the +z direction,
ffExH*-u,ds = VI*ff e X h*-u.ds
vI* [[erds=VI* (8-32)

P,

i

]

and the time-average power transmitted is
®, = Re (VI*) (8-33)

Hence, in terms of the mode voltage and current, power is calculated by
the usual circuit-theory formulas. o

1t is also worthwhile to note that the mode patterns, that is, pictures
of lines of & and 3¢ at some instant, can be obtained di‘rectly fror-n the
¥'s. For TE modes, H; is proportional to V¥, and E is perpendmglar
to H,. Hence, lines of constant ¥* are also lines of instaptaneou:s &. Lines
of instantaneous 3C; are everywhere perpendicular to lines of 1nsta{1tane-
ous & Similarly, for TM modes, lines of constant ¥™ are also lznes.of
instantaneous 3¢, and lines of instantaneous & are everywhere perpendic-
ular to lines of instantaneous 3C. Tt is therefore quite easy to sketch the
mode patterns directly from the eigenfl.mctions \I' . '

Recognizing that the general exposition of cylindrical Wavegm'(ies has
been quite lengthy, let us summarize the resulf‘,s. Table 8-1 hsts'the
more important relationships that we have derived. Thog.e equations
common to both TE and TM modes are written centered in the table.
Keep in mind that all of the equations apply to each mpde and that many
modes may exist simultaneously in any given waveguide. . .

Finally, for future reference, let us tabulate the normalized eigen-
functions for the special cases already treated. For the rectangular
waveguide of Fig. 2-16, we can pick the ¥’s from Eqs. (4-.19) and (4-21)
and normalize them according to Eq. (8-18). The result is

L1 abentn (7_”1 ) cos (@l" y>
Vmn® = ;r\/_/(mb)z T (na)® cOS 2 T b ©34)

- 2 ab . (mm . (r_zlr >
U™ = }\/_d__(mb)z-i- (na)zsm<a :1:) sin \ 5 ¥

where m,n =0,1,2, . . . ,(m=n= 0 excepted). Similarly, for the
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TaBLE 8-1. SuMMARY OF EQUATIONS FOR THE CYLINDRICAL WAVEGUIDE
(TEM Mobes NoT INCLUDED)

TE modes TM modes

Transverse Helmholtz equation V¥ + k¥ =0

8
Boundary relations {:Z =0 on C ¥m = () on C
e’ = u, X vy¥° em = —V,um
he = —-v,¥e h™ = —u, X vV, ¥™
Mode vectors -
= h X u,
= x e

Normalization

//e’ds=/ R¥ds =1

Propagation constant

y =k = {Jﬂ kNI =G >
@ —kax/l ~ G f<f.

Characteristic Z and Y Zy = jor _ 1 Zm o= L = 1
¥ Yo‘ jwe Yo"‘
av
— 4+ vZd =0
dz

Transmission-line equations
al
— + YV =0
dz

V = Ve vz 4 Ve
Mode voltage and current 1
I-= 7z (Ve 1 — V—er)

0

Transverse field g: : E}’

Longitudinal field Hy = ke Ve Em = k2 m Jm
Jou Jwe

z-directed power P,=VI*
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circular waveguide of Fig. 5-2, we can pick the ¥’s from Eqgs. (5-23) and
(5-27) and normalize them. The result is

oo — \/ €n Ja(zl0/a) {sin n¢>}
" Nal(zl)? — n?l Ja(z),) cos ng

€n Jn(xnpp/a) { Sinnd’]
T Tap Jnt1(Znp) | COS NP

(8-35)

¥, =

where n = 0, 1, 2, ,and p =1, 2, 3, The z,, are given by
Table 5-2, and the z,, are given by Table 5-3. Normalized eigenfunc-
tions for the parallel-plate guide are given in Prob. 8-1. Normalized
eigenfunctions for the coaxial and elliptic waveguides are given by
Marcuvitz.?

8-2. Modal Expansions in Waveguides. An arbitrary field inside a
section of waveguide can be expanded as a sum ‘over all possible modes.
This concept was used in Sec. 4-4 for the special case of the rectangular
waveguide. We now wish to consider such expansions for cylindrical
waveguides in general. The equations in Sec. 8-1 apply to each mode.
Henceforth, to identify a particular mode, we shall use the subscript ¢ to
denote the mode number.

Let us first show that each mode vector e; is orthogonal to all other
mode vectors. For this, we shall use the divergence theorem in two

dimensions, |
[[ v ads = ¢pA-nd

Green’s first identity in two dimensions,
¢
. 2 = A
// (V- Vid + ¥9209) ds = Py oo dl
and Green’s second identity in two dimensions,

/ (VY26 — ¢Vy) ds = ¢i<¢ % _ s ")

First, consider two TE modes and form the product
ef-¢ef = hgo hy = v, 0 Vi I°
Letting y = ¥.* and ¢ = ¥,° in Green’s first identity, we obtain

f / e e ds = — (ko) / / eV ds

Using the same substitution in Green’s second identity, we have
[(kci°)2 - (kcje)z] // W e ,e ds =0

1 N. Marcuvitz, “ Waveguide Handbook,”” MIT Radiation Laboratory Series, vol.

- 10, chap. 2, McGraw-Hill Book Company, Inc., New York, 1951.
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Hence, if ke 7 k.;°, the integral must vanish, and the preceding equation
becomes?

[[et-erds=0 i=j (3-36)
A dual analysis applies to the TM modes, and we have
// em-emrds =0 i3j (8-37)
Finally, we must consider the TE-TM cross products
es-em™=he-hm = —(u, X V,¥) - V, I,

If we let A = ¥;™u, X V;¥¢ in the divergence theorem, the contour
integral vanishes because of the boundary conditions, and we obtain

/ V™ eu, X Vo¥eds =0
Comparing the preceding two equations, we see that

/ / es-emds =0  foralli,j (8-38)

The orthogonality relationships [Eqs. (8-36) to (8-38)] also are valid for
the e’s replaced by the h’s.

At any cross section along a cylindrical waveguide, the field can be
expressed as a summation over all possible modes:

E, = EBi‘Vi‘ + eV

’ (8-39)
H, = Ehielie + hmI

Because of the orthogonality of the mode vectors, we can determine the
mode voltages and/or mode currents at any cross section by multiplying
each side of Eqs. (8-39) by an arbitrary mode vector and integrating over
the guide cross section. Noting that the mode vectors are normalized,

we obtain
/f E,ce?fds=Vp
(8-40)
/ H,-hrds = I

where p = ¢or m. Since there are two independent constantsin V and I
for each mode, as shown by Eqgs. (8-25) and (8-26), we need two ‘‘cross-

1 A discrete spectrum of eigenvalues is assumed. However, orthogonal sets of mode
functions for degenerate cases can also be found.
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sectional” boundary conditions. These may be (1) matched waveguide
and E. over one cross section, (2) matched waveguide and H, over one
cross section, (3) E; over two cross sections, (4) H; over two cross sections,
and (5) E. over one cross section and H, over another cross section. The
solutions of Sec. 4-9 are examples of case (1). Furthermore, when we
have currents in a waveguide, we can obtain additional cases involving
discontinuities in E, and/or H, over waveguide cross sections. The solu-
tions of Sec. 4-10 are examples of this situation.

It is also of interest to note that, when many modes exist simultane-
ously in a cylindrical waveguide, each mode propagates energy as if it exists
alone. Hence, the equivalent circuit of a section of waveguide in which
N modes exist is N separate transmission lines of the form of Fig. 8-2.
To show this power orthogonality, we calculate the z-directed complex
power

P.=[[E x B u.ds = [[ () ev:) x (JEh,-I}‘)-uzds

= Y VIF || ei-ejds = sz ¥ (8-41)
Z ’ // 2
1,7 )

which is a summation of the powers carried by each mode. (We have
used the indices 7 and j to order both TE and TM modes in the above
proof.) The energy stored per unit length in a waveguide is also the
sum of the energies stored in each mode (see Prob. 8-3).

8-3. The Network Concept. In Sec. 3-8, we saw that, given N sets
of “circuit’’ terminals, the voltages at the terminals were related to the
currents by an impedance matrix. This impedance matrix was shown to
be symmetrical, that is, the usual circuit-theory reciprocity applied if the
medium was isotropic. We shall now show that the same network
formulation applies if, instead of circuit voltages and currents, the modal
voltages and currents of waveguide ‘“ports’ are used.

Let Fig. 8-3 represent a general ‘“‘microwave network,”’ that is, a system
for which a closed surface separating the network from the rest of space
can be found such that n X E = 0 on the surface except over one or
more waveguide cross sections. Suppose that only one mode propagates

@

Fie. 83. A microwave
network.
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